Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification
نویسندگان
چکیده
منابع مشابه
A 97 - 37036 Aiaa - 97 - 3530 Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification
The problem of a spacecraft tracking a desired trajectory is defined and addressed using adaptive feedback control. The control law, which has the form of a sixth-order dynamic compensator, does not require knowledge of the inertia of the spacecraft. A Lyapunov argument is used to show that tracking is achieved globally. A simple spin about the intermediate principal axis and a coning motion ar...
متن کاملAdaptive Model-Independent Tracking of Rigid Body Position and Attitude Motion with Mass and Inertia Matrix Identification using Dual Quaternions
In this paper, we propose a nonlinear adaptive position and attitude tracking controller for a rigid body that requires no information about the mass and inertia matrix of the body. Moreover, we provide sufficient conditions on the reference trajectory that guarantee mass and inertia matrix identification. The controller is shown to be almost globally asymptotically stable and can handle large ...
متن کاملAdaptive Spacecraft Attitude Tracking Control with Actuator Uncertainties
An adaptive control algorithm for the spacecraft attitude tracking problem when the spin axis directions and/or the gains of the flywheel actuators are uncertain is developed. A smooth projection algorithm is applied to keep the parameter estimates inside a singularityfree region and avoid parameter bursting. Numerical examples show that the controller successfully deals with unknown misalignme...
متن کاملSpacecraft Attitude Tracking Control
The problem of reorienting a spacecraft in to acquire a moving target is investigated. The spacecraft is modeled as a rigid body with N axisymmetric wheels controlled by axial torques, and the kinematics are represented by Modified Rodriques Parameters. The trajectory, denoted the reference trajectory, is one generated by a virtual spacecraft that is identical to the actual spacecraft. The open...
متن کاملTorque-saturated, Inertia-free Spacecraft Attitude Control
Torque-saturated control laws for spacecraft attitude control are considered. These control laws require no knowledge of the mass distribution of the spacecraft and thus are inertia-free. We examine two specific problems. In the first problem, the spacecraft has an arbitrary initial attitude and angular velocity, and the objective is to bring the spacecraft to rest with a specified attitude. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Guidance, Control, and Dynamics
سال: 1998
ISSN: 0731-5090,1533-3884
DOI: 10.2514/2.4310